Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jul;39(8):1462-9.

Submicrovolt flicker electroretinogram: cycle-by-cycle recording of multiple harmonics with statistical estimation of measurement uncertainty

Affiliations
  • PMID: 9660495

Submicrovolt flicker electroretinogram: cycle-by-cycle recording of multiple harmonics with statistical estimation of measurement uncertainty

P A Sieving et al. Invest Ophthalmol Vis Sci. 1998 Jul.

Abstract

Purpose: To study cycle-by-cycle recording of small-amplitude flicker-electroretinogram (ERG) responses and analyze results with robust statistical methods to estimate the measurement uncertainty.

Methods: Flicker ERGs at 32 Hz were recorded simultaneously from both eyes of patients with retinal degeneration. The ERG was amplified under wide-band (1-1000 Hz) conditions, digitized at 6144 Hz/eye, and multiplied point for point (192 points/cycle) by sine and cosine functions within each 1/32-second flash cycle to extract coefficients for six harmonic components of a discrete Fourier transform in real time. Amplitude windowing was not used, and all data were saved for subsequent statistical processing to identify and remove large-amplitude artifacts discretely and to search for quiet recording periods that minimized small-amplitude noise.

Results: Plots of amplitude and phase indicated far outlying noise points that were excised from the data. The SD of sequential intervals on a time line of the sine component identified quiet periods that minimized small-amplitude noise and improved measurement consistency. The SE of the response mean provided an estimate of measurement uncertainty.

Conclusions: The harmonic components of many individual responses are captured quickly (e.g., 500 responses in 15.6 seconds) for post hoc statistical analysis, using mathematical algorithms that are precisely reproducible to facilitate comparison of results from all laboratories. Graphical time lines of responses allow separation of artifact transients from gaussian noise for elimination of noisy periods without disturbing the stored information. Statistical estimates of measurement uncertainty are determined on-line to allow immediate feedback during the recording session. Amplitude-phase plots of the multiple harmonic components, along with reconstructed analog waveforms, provide results in a readily assimilated manner for comparison of all testing sessions.

PubMed Disclaimer

Publication types

LinkOut - more resources