Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jul;26(7):653-60.

Calcium binding by human and rabbit serum paraoxonases. Structural stability and enzymatic activity

Affiliations
  • PMID: 9660847

Calcium binding by human and rabbit serum paraoxonases. Structural stability and enzymatic activity

C L Kuo et al. Drug Metab Dispos. 1998 Jul.

Abstract

Equilibrium dialysis and Scatchard plots were used to establish that human and rabbit paraoxonases both have two calcium binding sites. Independent-site and stepwise constant analyses were used to calculate a higher affinity site (Kd1) of 3.6 +/- 0.9 x 10(-7) M for human A paraoxonase, and 1.4 +/- 0.5 x 10(-8) M for rabbit paraoxonase, and a lower affinity site (Kd2) of 6.6 +/- 1.2 x 10(-6) M for human A paraoxonase, and 5.3 +/- 0.94 x 10(-6) M for rabbit paraoxonase. In both species, the higher affinity sites were found to be essential to maintain hydrolytic activity; complete removal of calcium led to irreversible inactivation. The lower affinity sites were required for catalytic activity, and their binding of calcium was reversible. Experimentally estimated values of Kd2 based on the concentration of calcium required to obtain half the maximum enzymatic activity were 3 microM for human A and B paraoxonases, and also in the order of 3 microM for rabbit paraoxonase, using three different substrates. Calcium was the only metal found that protects against denaturation and also confers hydrolytic activity with these two mammalian paraoxonases.

PubMed Disclaimer

Publication types

LinkOut - more resources