Multiple effects of trehalose on protein folding in vitro and in vivo
- PMID: 9660948
- DOI: 10.1016/s1097-2765(00)80064-7
Multiple effects of trehalose on protein folding in vitro and in vivo
Abstract
The disaccharide trehalose is produced in large quantities by diverse organisms during a variety of stresses. Trehalose prevents proteins from denaturing at high temperatures in vitro, but its function in stress tolerance in vivo is controversial. We report that trehalose stabilizes proteins in yeast cells during heat shock. Surprisingly, trehalose also suppresses the aggregation of denatured proteins, maintaining them in a partially-folded state from which they can be activated by molecular chaperones. The continued presence of trehalose, however, interferes with refolding, suggesting why it is rapidly hydrolyzed following heat shock. These findings reconcile conflicting reports on the role of trehalose in stress tolerance, provide a novel tool for accessing protein folding intermediates, and define new parameters for modulating stress tolerance and protein aggregation.
Similar articles
-
Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses.J Biol Chem. 2001 Oct 26;276(43):39586-91. doi: 10.1074/jbc.M103081200. Epub 2001 Aug 21. J Biol Chem. 2001. PMID: 11517217
-
Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose.Trends Biotechnol. 1998 Nov;16(11):460-8. doi: 10.1016/s0167-7799(98)01251-7. Trends Biotechnol. 1998. PMID: 9830154 Review.
-
Influence of trehalose on the molecular chaperone activity of p26, a small heat shock/alpha-crystallin protein.Cell Stress Chaperones. 2001 Apr;6(2):126-35. doi: 10.1379/1466-1268(2001)006<0126:iototm>2.0.co;2. Cell Stress Chaperones. 2001. PMID: 11599574 Free PMC article.
-
Trehalose is required for conformational repair of heat-denatured proteins in the yeast endoplasmic reticulum but not for maintenance of membrane traffic functions after severe heat stress.Mol Microbiol. 2000 Jul;37(1):42-53. doi: 10.1046/j.1365-2958.2000.01970.x. Mol Microbiol. 2000. PMID: 10931304
-
Trehalose as a "chemical chaperone": fact and fantasy.Adv Exp Med Biol. 2007;594:143-58. doi: 10.1007/978-0-387-39975-1_13. Adv Exp Med Biol. 2007. PMID: 17205682 Review.
Cited by
-
Characterizing the in vivo role of trehalose in Saccharomyces cerevisiae using the AGT1 transporter.Proc Natl Acad Sci U S A. 2015 May 12;112(19):6116-21. doi: 10.1073/pnas.1506289112. Epub 2015 Apr 27. Proc Natl Acad Sci U S A. 2015. PMID: 25918382 Free PMC article.
-
Yeast Tolerance to Various Stresses Relies on the Trehalose-6P Synthase (Tps1) Protein, Not on Trehalose.J Biol Chem. 2015 Jun 26;290(26):16177-90. doi: 10.1074/jbc.M115.653899. Epub 2015 May 1. J Biol Chem. 2015. Retraction in: J Biol Chem. 2019 Apr 12;294(15):5812. doi: 10.1074/jbc.W119.008564. PMID: 25934390 Free PMC article. Retracted.
-
Structural Analysis of Binding Determinants of Salmonella typhimurium Trehalose-6-phosphate Phosphatase Using Ground-State Complexes.Biochemistry. 2020 Sep 8;59(35):3247-3257. doi: 10.1021/acs.biochem.0c00317. Epub 2020 Aug 17. Biochemistry. 2020. PMID: 32786412 Free PMC article.
-
The thermophilic yeast Hansenula polymorpha does not require trehalose synthesis for growth at high temperatures but does for normal acquisition of thermotolerance.J Bacteriol. 1999 Aug;181(15):4665-8. doi: 10.1128/JB.181.15.4665-4668.1999. J Bacteriol. 1999. PMID: 10419968 Free PMC article.
-
Mechanisms of resistance to oxidative and nitrosative stress: implications for fungal survival in mammalian hosts.Eukaryot Cell. 2004 Aug;3(4):835-46. doi: 10.1128/EC.3.4.835-846.2004. Eukaryot Cell. 2004. PMID: 15302816 Free PMC article. Review. No abstract available.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials