Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jun;41(6):649-53.
doi: 10.1007/s001250050963.

Overexpression of mitochondrial FAD-linked glycerol-3-phosphate dehydrogenase does not correct glucose-stimulated insulin secretion from diabetic GK rat pancreatic islets

Affiliations

Overexpression of mitochondrial FAD-linked glycerol-3-phosphate dehydrogenase does not correct glucose-stimulated insulin secretion from diabetic GK rat pancreatic islets

K Ueda et al. Diabetologia. 1998 Jun.

Abstract

Glucose-stimulated insulin secretion is impaired in GK (Goto-Kakizaki) rats, perhaps because of abnormalities in glucose metabolism in pancreatic islet beta cells. The glycerol phosphate shuttle plays a major role in glucose metabolism by reoxidizing cytosolic NADH generated by glycolysis. In the pancreatic islets of GK rats, the activity of mitochondrial FAD-linked glycerol-3-phosphate dehydrogenase (mGPDH), the key enzyme of the glycerol phosphate shuttle, is decreased and this abnormality may be responsible, at least in part, for impaired glucose-stimulated insulin secretion. To investigate this possibility, we overexpressed mGPDH in islets isolated from GK rats via recombinant adenovirus-mediated gene transduction, and examined glucose-stimulated insulin secretion. In islets isolated from diabetic GK rats at 8 to 10 weeks of age, glucose-stimulated insulin secretion was severely impaired, and mGPDH activity was decreased to 79 % of that in non-diabetic Wistar rats. When mGPDH was overexpressed in islets from GK rats, enzyme activity and protein content increased 2- and 6-fold, respectively. Basal (3 mmol/l glucose) and glucose-stimulated (20 mmol/l) insulin secretion from the Adex1CAlacZ-infected GK rat islets were, respectively, 4.4 +/- 0.7 and 8.1 +/- 0.7 ng. x islet(-1) x 30 min(-1), and those from mGPDH-overexpressed GK rat islets 4.7 +/- 0.3 and 9.1 +/- 0.8 ng x islet(-1) x 30 min(-1), in contrast to those from the AdexlCAlacZ-infected non-diabetic Wistar rat islets (4.7 +/- 1.6 and 47.6 +/- 11.9 ng x islet(-1) x 30 min(-1)). Thus, glucose-stimulated insulin secretion is severely impaired in GK rats even in the stage when mGPDH activity is modestly decreased, and at this stage, overexpression of mGPDH cannot restore glucose-stimulated insulin secretion. We conclude that decreased mGPDH activity in GK rat islets is not the defect primarily responsible for impaired glucose-stimulated insulin secretion.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources