Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jul-Aug;14(4):553-63.
doi: 10.1177/074823379801400406.

Autism: xenobiotic influences

Affiliations

Autism: xenobiotic influences

S B Edelson et al. Toxicol Ind Health. 1998 Jul-Aug.

Abstract

The advances in medical technology during the last four decades has provided evidence for an underlying neurological basis for autism. The etiology for the variations of neurofunctional anomalies found in the autistic spectrum behaviors appears inconclusive as of this date but growing evidence supports the proposal that chronic exposure to toxic agents, i.e., xenobiotic agents, to a developing central nervous system may be the best model for defining the physiological and behavioral data found in these populations. A total of 20 subjects (15 males and 5 females) who received a formal diagnosis of autism by a developmental pediatrician, pediatric neurologist, or licensed psychologist were included. The mean age for the sample was 6.35 yrs offnge = 3-12 years). This study employed several measures that collectively would provide evidence of burden levels of xenobiotic agents and abnormal liver detoxication processes. These included: (1) Glucaric Acid Analysis, (2) blood analyses for identification of specific xenobiotic agents, and (3) Comprehensive Liver Detoxification Evaluation. Kolmogorov-Smirnov testing for a chi-square and Normal distribution of the Glucaric Acid finding indicates that each of these distributions is significantly different from expected distributions (p < .01). It is most noteworthy that of the 20 cases examined for this study, 100% of the cases showed liver detoxication profiles outside of normal. An examination of 18 autistic children in blood analyses that were available showed that 16 of these children showed evidence of levels of toxic chemicals exceeding adult maximum tolerance. In the two cases where toxic chemical levels were not found, there was abnormal D-glucaric acid findings suggesting abnormal xenobiotic influences on liver detoxication processes. A proposed mechanism for the interaction of xenobiotic toxins with immune system dysfunction and continuous and/or progressive endogenous toxicity is presented as it relates to the development of behaviors found in the autistic spectrum.

PubMed Disclaimer

LinkOut - more resources