Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1998 Jul;47(1):93-108.
doi: 10.1007/pl00006366.

The evolution of hexamerins and the phylogeny of insects

Affiliations
Comparative Study

The evolution of hexamerins and the phylogeny of insects

T Burmester et al. J Mol Evol. 1998 Jul.

Abstract

The evolutionary relationships among arthropod hemocyanins and insect hexamerins were investigated. A multiple sequence alignment of 12 hemocyanin and 31 hexamerin subunits was constructed and used for studying sequence conservation and protein phylogeny. Although hexamerins and hemocyanins belong to a highly divergent protein superfamily and only 18 amino acid positions are identical in all the sequences, the core structures of the three protein domains are well conserved. Under the assumption of maximum parsimony, a phylogenetic tree was obtained that matches perfectly the assumed phylogeny of the insect orders. An interesting common clade of the hymenopteran and coleopteran hexamerins was observed. In most insect orders, several paralogous hexamerin subclasses were identified that diversified after the splitting of the major insect orders. The dipteran arylphorin/LSP-1-like hexamerins were subject to closer examination, demonstrating hexamerin gene amplification and gene loss in the brachyceran Diptera. The hexamerin receptors, which belong to the hexamerin/hemocyanin superfamily, diverged early in insect evolution, before the radiation of the winged insects. After the elimination of some rapidly or slowly evolving sequences, a linearized phylogenetic tree of the hexamerins was constructed under the assumption of a molecular clock. The inferred time scale of hexamerin evolution, which dates back to the Carboniferous, agrees with the available paleontological data and reveals some previously unknown divergence times among and within the insect orders.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Grants and funding

LinkOut - more resources