Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jul;68(1):72-81.
doi: 10.1093/ajcn/68.1.72.

A molecular model of human branched-chain amino acid metabolism

Affiliations

A molecular model of human branched-chain amino acid metabolism

A Suryawan et al. Am J Clin Nutr. 1998 Jul.

Abstract

To establish an accurate molecular model of human branched-chain amino acid (BCAA) metabolism, the distribution, activity, and expression of the first 2 enzymes in the catabolic pathway--branched-chain-amino-acid aminotransferase (BCAT) and branched-chain alpha-keto acid dehydrogenase (BCKD) complex--were determined in human tissues. The same enzyme activities were measured in rat and African green monkey tissues. Overall, the activities of BCAT and BCKD were higher in rat than in human and monkey tissues; nevertheless, the ratio of the 2 activities was similar in most tissues in the 3 species. Total oxidative capacity was concentrated in skeletal muscle and liver (> 70%) with muscle having a higher proportion of the total in humans and monkeys. In humans, brain (10-20%) and kidney (8-13%) may contribute significantly to whole-body BCAA metabolism. Furthermore, in primates the high ratio of transaminase to oxidative capacity in the entire gastrointestinal tract serves to prevent loss of essential BCAA carbon and raises the possibility that the gastrointestinal tract contributes to the plasma branched-chain alpha-keto acid pool. Quantitative polymerase chain reaction was used to examine expression of human branched-chain alpha-keto acid dehydrogenase kinase (BCKDK), the key enzyme that regulates the activity state of the human BCKD complex and human BCAT isoenzymes. To design the primers for the polymerase chain reaction, human BCKDK was cloned. BCKDK message was found in all human tissues tested, with the highest amount in human muscle. As in rats, there was ubiquitous expression of mitochondrial BCAT, whereas mRNA for the cytosolic enzyme was at or below the limit of detection outside the brain. Finally, the role of BCAA in body nitrogen metabolism is discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources