Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Jul;44(1):1-10.
doi: 10.1203/00006450-199807000-00001.

Proton magnetic resonance spectroscopy: an emerging technology in pediatric neurology research

Affiliations
Review

Proton magnetic resonance spectroscopy: an emerging technology in pediatric neurology research

E Novotny et al. Pediatr Res. 1998 Jul.

Abstract

Proton magnetic resonance spectroscopy (MRS) is an emerging technology that allows for the quantitative noninvasive assessment of regional brain biochemistry. The capacity to carry out MRS studies requires existing magnetic resonance imaging (MRI) technology platforms and the purchase of commercially available software modifications. In this review, the physical basis for MRS will be presented leading to an understanding of its potential applications and limitations within the clinical research milieu. Thus far, within pediatric neurology, proton MRS studies have been used to assist in the prediction of outcome in a variety of settings of acquired brain injuries (perinatal asphyxia, near drowning). In addition, proton MRS has been used to document disturbances in oxidative metabolism in neurometabolic disorders, assisting in defining phenotype and the response to therapeutic interventions. In epilepsy, spectroscopic studies have been useful in localizing the epileptogenic zone in intractable focal epilepsies. Future applications of proton MRS will also be highlighted. These include its use as a means of observing the transport and metabolism of various compounds in the brain, its concurrent application with other nuclear magnetic resonance techniques such as MRI and functional MRI, and finally its potential as a means of assessing the short-term effects of any CNS targeted pharmacologic interventions.

PubMed Disclaimer

Similar articles

Cited by