Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jul 24;273(30):18819-25.
doi: 10.1074/jbc.273.30.18819.

A novel molecular determinant for cAMP-dependent regulation of the frog heart Na+-Ca2+ exchanger

Affiliations
Free article

A novel molecular determinant for cAMP-dependent regulation of the frog heart Na+-Ca2+ exchanger

Y M Shuba et al. J Biol Chem. .
Free article

Erratum in

  • J Biol Chem 1998 Oct 23;273(43):28542

Abstract

Na+-Ca2+ exchanger is one of the major sarcolemmal Ca2+ transporters of cardiac myocytes. In frog ventricular myocytes the exchanger is regulated by isoproterenol via a beta-adrenoreceptor/adenylate-cyclase/cAMPdependent signaling pathway providing a molecular mechanism for the relaxant effect of the hormone. Here, we report on the presence of a novel exon of 27-base pair insertion, which generates a nucleotide binding motif (P-loop) in the frog cardiac Na+-Ca2+ exchanger. To examine the functional role of this motif, we constructed a full-length frog heart Na+-Ca2+ exchanger cDNA (fNCX1a) containing this exon. The functional expression of fNCX1a in oocytes showed characteristic voltage dependence, divalent (Ni2+, Cd2+) inhibition, and sensitivity to cAMP in a manner similar to that of native exchanger in frog myocytes. In oocytes expressing the dog heart NCX1 or the frog mutant (DeltafNCX1a) lacking the 9-amino acid exon, cAMP failed to regulate Na+-dependent Ca2+ uptake. We suggest that this motif is responsible for the observed cAMP-dependent functional differences between the frog and the mammalian hearts.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources