Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jul 9;394(6689):192-5.
doi: 10.1038/28190.

Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins

Affiliations

Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins

G Miesenböck et al. Nature. .

Abstract

In neural systems, information is often carried by ensembles of cells rather than by individual units. Optical indicators provide a powerful means to reveal such distributed activity, particularly when protein-based and encodable in DNA: encodable probes can be introduced into cells, tissues, or transgenic organisms by genetic manipulation, selectively expressed in anatomically or functionally defined groups of cells, and, ideally, recorded in situ, without a requirement for exogenous cofactors. Here we describe sensors for secretion and neurotransmission that fulfil these criteria. We have developed pH-sensitive mutants of green fluorescent protein ('pHluorins') by structure-directed combinatorial mutagenesis, with the aim of exploiting the acidic pH inside secretory vesicles to monitor vesicle exocytosis and recycling. When linked to a vesicle membrane protein, pHluorins were sorted to secretory and synaptic vesicles and reported transmission at individual synaptic boutons, as well as secretion and fusion pore 'flicker' of single secretory granules.

PubMed Disclaimer

Publication types

Associated data

LinkOut - more resources