Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Apr;31(4):303-10.
doi: 10.1016/s0021-9290(98)00022-0.

Finite element analysis of the implanted proximal tibia: a relationship between the initial cancellous bone stresses and implant migration

Affiliations

Finite element analysis of the implanted proximal tibia: a relationship between the initial cancellous bone stresses and implant migration

M Taylor et al. J Biomech. 1998 Apr.

Abstract

The cancellous bone stresses within the implanted proximal tibia were examined using a three-dimensional anatomical finite element model. Three versions of a proximal tibial prosthesis were examined: an all polyethylene press-fit design; a metal backed, stemmed press-fit design and a (horizontally) cemented metal backed, stemmed design. All three designs had published migration and survivorship data. The objectives of the study were (i) to compare the stresses generated by each of the tibial components, (ii) examine the influence of the resected surface morphology and (iii) compare the initial cancellous bone stresses with the published migration and survivorship data. The all polyethylene prosthesis generated the highest cancellous bone stresses. Addition of a metal backing and a stem reduced the stresses, but the cemented device produced the lowest cancellous bone stresses. The surface morphology had a significant effect on the cancellous bone stresses generated by press-fit prostheses. As the bone-prosthesis contact area decreased, the peak cancellous bone stresses increased by as much as 243%. The surface morphology had no effect on the cancellous bone stresses generated by the cemented implant. Good correlation was found between the predicted cancellous bone stresses and the migration and survivorship data, with the implant generating the highest cancellous bone stresses migrating the most and having the poorest survival rates at 5 year. The results support the hypothesis that the progressive failure of cancellous bone is a mechanism of implant migration regardless of the method of fixation and the implantation site.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources