Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Aug;75(2):1117-30.
doi: 10.1016/S0006-3495(98)77601-5.

Oligomeric state of human erythrocyte band 3 measured by fluorescence resonance energy homotransfer

Affiliations

Oligomeric state of human erythrocyte band 3 measured by fluorescence resonance energy homotransfer

S M Blackman et al. Biophys J. 1998 Aug.

Abstract

The oligomeric state of the erythrocyte anion exchange protein, band 3, has been assayed by resonance energy homotransfer. Homotransfer between oligomeric subunits, labeled with eosin-5-maleimide at Lys430 in the transmembrane domain, has been demonstrated by steady-state and time-resolved fluorescence spectroscopy, and is readily observed by its depolarization of the eosin fluorescence. Polarized fluorescence measurements of HPLC-purified band 3 oligomers indicate that eosin homotransfer increases progressively with increasing species size. This shows that homotransfer also occurs between labeled band 3 dimers as well as within the dimers, making fluorescence anisotropy measurements sensitive to band 3 self-association. Treatment of ghost membranes with either Zn2+ or melittin, agents that cluster band 3, significantly decreases the anisotropy as a result of the increased homotransfer within the band 3 clusters. By comparison with the anisotropy of species of known oligomeric state, the anisotropy of erythrocyte ghost membranes at 37 degrees C is consistent with dimeric and/or tetrameric band 3, and does not require postulation of a fraction of large clusters. Proteolytic removal of the cytoplasmic domain of band 3, which significantly increases the rotational mobility of the transmembrane domain, does not affect its oligomeric state, as reported by eosin homotransfer. These results support a model in which interaction with the membrane skeleton restricts the mobility of band 3 without significantly altering its self-association state.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nature. 1979 Aug 9;280(5722):468-73 - PubMed
    1. Biochemistry. 1979 Aug 7;18(16):3457-65 - PubMed
    1. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4702-6 - PubMed
    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. Biochemistry. 1971 Jun 22;10(13):2606-17 - PubMed

Publication types

MeSH terms

LinkOut - more resources