Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Feb;13(4):437-46.
doi: 10.1046/j.1365-313x.1998.00044.x.

Dual regulation of a heat shock promoter during embryogenesis: stage-dependent role of heat shock elements

Affiliations
Free article

Dual regulation of a heat shock promoter during embryogenesis: stage-dependent role of heat shock elements

C Almoguera et al. Plant J. 1998 Feb.
Free article

Abstract

Transgenic tobacco expression was analysed of chimeric genes with point mutations in the heat shock element (HSE) arrays of a small heat shock protein (sHSP) gene from sunflower: Ha hsp17.7 G4. The promoter was developmentally regulated during zygotic embryogenesis and responded to heat stress in vegetative tissues. Mutations in the HSE affected nucleotides crucial for human heat shock transcription factor 1 (HSF1) binding. They abolished the heat shock response of Ha hsp17.7 G4 and produced expression changes that demonstrated dual regulation of this promoter during embryogenesis. Thus, whereas activation of the chimeric genes during early maturation stages did not require intact HSE, expression at later desiccation stages was reduced by mutations in both the proximal (-57 to -89) and distal (-99 to -121) HSE. In contrast, two point mutations in the proximal HSE that did not severely affect gene expression during zygotic embryogenesis, eliminated the heat shock response of the same chimeric gene in vegetative organs. Therefore, by site-directed mutagenesis, it was possible to separate the heat shock response of Ha hsp17.7 G4 from its developmental regulation. The results indicate the co-existence, in a single promoter, of HSF-dependent and -independent regulation mechanisms that would control sHSP gene expression at different stages during plant embryogenesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources