Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Aug;275(2):H431-42.
doi: 10.1152/ajpheart.1998.275.2.H431.

Stretch-induced changes in arrhythmogenesis and excitability in experimentally based heart cell models

Affiliations

Stretch-induced changes in arrhythmogenesis and excitability in experimentally based heart cell models

T L Riemer et al. Am J Physiol. 1998 Aug.

Abstract

Mechanoelectric coupling in the heart is well documented and has been suggested as a cause of arrhythmia. One hypothesized mechanism for the stretch sensitivity of cardiac muscle is the presence of stretch-activated channels (SACs). This study uses modeling to explore the influence of SACs on cardiac resting potential, excitation threshold, and action potential in the context of arrhythmia. We added a putative SAC, modeled as a linear, time-independent conductance with reversal potential of -20 or -50 mV, to guinea pig and frog ventricular membrane models. Increased stretch conductance led to resting potential depolarization, a decreased excitation threshold, altered action potential duration, and, under certain conditions, early afterdepolarizations. We conclude that stretch increases cellular excitability, making the heart prone to ectopic activity. Regional effects of stretch on action potential duration can vary and are influenced by factors such as the SAC reversal potential, ionic conditions, and baseline currents, all of which may lead to an increased dispersion of refractoriness throughout the heart and therefore an increased risk of arrhythmia.

PubMed Disclaimer

Publication types

LinkOut - more resources