Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Aug;275(2):H568-76.
doi: 10.1152/ajpheart.1998.275.2.H568.

Ox-LDL induces apoptosis in human coronary artery endothelial cells: role of PKC, PTK, bcl-2, and Fas

Affiliations

Ox-LDL induces apoptosis in human coronary artery endothelial cells: role of PKC, PTK, bcl-2, and Fas

D Li et al. Am J Physiol. 1998 Aug.

Abstract

Oxidized low-density lipoprotein (ox-LDL) plays a critical role in the development of atherosclerosis. Recent studies show that ox-LDL may induce apoptosis of cultured rabbit smooth muscle cells and human macrophages. This study was designed to determine the modulation by ox-LDL of apoptosis in cultured human coronary arterial endothelial cells (HCAEC) during hypoxia-reoxygenation and to determine underlying mechanisms. When HCAEC were approximately 85% confluent, the cells were exposed to hypoxia (24 h)-reoxygenation (3 h), native LDL, or ox-LDL. Fragmented DNA end-labeling, DNA laddering, and light and electron microscopy were used to determine changes characteristic of apoptosis. Ox-LDL (20 microg/ml) increased apoptosis during hypoxia-reoxygenation compared with hypoxia-reoxygenation alone (P < 0.05). Low concentrations of ox-LDL (5 microg/ml) and native LDL (20 microg/ml) under identical conditions had no effect on the degree of apoptosis. Ox-LDL markedly decreased endogenous superoxide dismutase activity and increased lipid peroxidation in HCAEC. The presence of ox-LDL, but not native LDL, in cultured HCAEC resulted in the activation of protein kinase C (PKC) and protein tyrosine kinase (PTK). The specific PKC and PTK inhibitors significantly reduced ox-LDL-mediated apoptosis of HCAEC (P < 0.05). Hypoxia-reoxygenation significantly increased Fas expression and decreased bcl-2 expression in HCAEC lysate as determined by Western analysis. Ox-LDL further increased Fas expression and decreased bcl-2 expression. These data indicate that ox-LDL enhances hypoxia-reoxygenation-mediated apoptosis in HCAEC. Ox-LDL-mediated apoptosis of HCAEC appears to involve activation of PKC and PTK. In addition, ox-LDL modulates Fas and bcl-2 protein expression in HCAEC. This study also suggests that ox-LDL is more important than native LDL in hypoxia-reoxygenation-induced apoptosis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources