Energy conservation in the decarboxylation of dicarboxylic acids by fermenting bacteria
- PMID: 9683642
- DOI: 10.1007/s002030050616
Energy conservation in the decarboxylation of dicarboxylic acids by fermenting bacteria
Abstract
Decarboxylation of dicarboxylic acids (oxalate, malonate, succinate, glutarate, and malate) can serve as the sole energy source for the growth of fermenting bacteria. Since the free energy change of a decarboxylation reaction is small (around -20 kJ per mol) and equivalent to only approximately one-third of the energy required for ATP synthesis from ADP and phosphate under physiological conditions, the decarboxylation energy cannot be conserved by substrate-level phosphorylation. It is either converted (in malonate, succinate, and glutarate fermentation) by membrane-bound primary decarboxylase sodium ion pumps into an electrochemical gradient of sodium ions across the membrane; or, alternatively, an electrochemical proton gradient can be established by the combined action of a soluble decarboxylase with a dicarboxylate/monocarboxylate antiporter (in oxalate and malate fermentation). The thus generated electrochemical Na+ or H+ gradients are then exploited for ATP synthesis by Na+- or H+-coupled F1F0 ATP synthases. This new type of energy conservation has been termed decarboxylation phosphorylation and is responsible entirely for ATP synthesis in several anaerobic bacteria.
Similar articles
-
Energy conservation in fermentative glutarate degradation by the bacterial strain WoG13.FEMS Microbiol Lett. 1992 Dec 15;100(1-3):221-5. doi: 10.1111/j.1574-6968.1992.tb14044.x. FEMS Microbiol Lett. 1992. PMID: 1335946
-
Bacterial sodium ion-coupled energetics.Antonie Van Leeuwenhoek. 1994;65(4):381-95. doi: 10.1007/BF00872221. Antonie Van Leeuwenhoek. 1994. PMID: 7832594 Review.
-
ATP synthesis by decarboxylation phosphorylation.Results Probl Cell Differ. 2008;45:153-84. doi: 10.1007/400_2007_045. Results Probl Cell Differ. 2008. PMID: 18049805 Review.
-
Bacterial energy transductions coupled to sodium ions.Res Microbiol. 1990 Mar-Apr;141(3):332-6. doi: 10.1016/0923-2508(90)90007-d. Res Microbiol. 1990. PMID: 2177912 Review.
-
Anaerobic malonate decarboxylation by Citrobacter diversus. Growth and metabolic studies, and evidence of ATP formation.Arch Microbiol. 1992;157(5):471-4. doi: 10.1007/BF00249107. Arch Microbiol. 1992. PMID: 1510573
Cited by
-
Natranaerofaba carboxydovora gen. nov., sp. nov., an extremely haloalkaliphilic CO-utilizing acetogen from a hypersaline soda lake representing a novel deep phylogenetic lineage in the class 'Natranaerobiia'.Environ Microbiol. 2021 Jul;23(7):3460-3476. doi: 10.1111/1462-2920.15241. Epub 2020 Sep 30. Environ Microbiol. 2021. PMID: 32955149 Free PMC article.
-
Energy conservation via electron-transferring flavoprotein in anaerobic bacteria.J Bacteriol. 2008 Feb;190(3):784-91. doi: 10.1128/JB.01422-07. Epub 2007 Nov 26. J Bacteriol. 2008. PMID: 18039764 Free PMC article. Review. No abstract available.
-
Anaplerotic Pathways in Halomonas elongata: The Role of the Sodium Gradient.Front Microbiol. 2020 Sep 25;11:561800. doi: 10.3389/fmicb.2020.561800. eCollection 2020. Front Microbiol. 2020. PMID: 33101236 Free PMC article.
-
Dual transcriptional profiling of a bacterial/fungal confrontation: Collimonas fungivorans versus Aspergillus niger.ISME J. 2011 Sep;5(9):1494-504. doi: 10.1038/ismej.2011.29. Epub 2011 May 26. ISME J. 2011. PMID: 21614084 Free PMC article.
-
The linear chromosome of the plant-pathogenic mycoplasma 'Candidatus Phytoplasma mali'.BMC Genomics. 2008 Jun 26;9:306. doi: 10.1186/1471-2164-9-306. BMC Genomics. 2008. PMID: 18582369 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources