Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Apr;38(1):16-24.
doi: 10.1016/s0008-6363(97)00299-x.

The role of 11 beta-hydroxysteroid dehydrogenase in the pathogenesis of hypertension

Affiliations
Review

The role of 11 beta-hydroxysteroid dehydrogenase in the pathogenesis of hypertension

S H van Uum et al. Cardiovasc Res. 1998 Apr.

Abstract

The two 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) isozymes catalyze the interconversion of cortisol and cortisone. Type 1 11 beta-HSD (11 beta-HSD1) has bidirectional activity, while type 2 11 beta-HSD (11 beta-HSD2) mainly converts cortisol into cortisone. Of these two hormones only cortisol has affinity to mineralocorticoid receptors (MRs) and thus induces mineralocorticoid effects. A normal activity of 11 beta-HSD2 is crucial for prevention of mineralocorticoid activity of cortisol. Absent or decreased 11 beta-HSD2 activity results in cortisol-mediated hypermineralocorticoid hypertension. In several hypertensive syndromes a decreased 11 beta-HSD2 activity has been described as the pathogenetic mechanism of the increased blood pressure. In the apparent mineral corticoid excess (AME) syndrome type 1, absence of 11 beta-HSD2 activity is caused by mutations in the gene coding for 11 beta-HSD2. In licorice-induced hypertension glycyrrhetinic acid, the active substituent of licorice, inhibits 11 beta-HSD2 resulting in an acquired hypermineralocorticoid state. 11 beta-HSD2 activity is not decreased in glucocorticoid hypertension (Cushing's syndrome). In essential hypertension some evidence for decreased systemic and skin activity of 11 beta-HSD1 and/or 11 beta-HSD2 has been found, while renal activity of both isozymes appears to be normal. 11 beta-HSD2 activity is also present in cardiovascular myocytes of humans and dogs, and inhibition of 11 beta-HSD potentiates the vascular response to catecholamines. Although MRs in the central nervous system have been incriminated in the pathogenesis of mineralocorticoid hypertension, a pathophysiological role for 11 beta-HSD2 has not yet been described. Finally, in the placenta 11 beta-HSD2 reduces fetal exposure to maternal glucocorticoids and a decreased activity of this isozyme may result in low birth weight and increased risk of high blood pressure at adult age.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources