Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jul;39(7):1327-34.

Arachidonic acid inhibits lipogenic gene expression in 3T3-L1 adipocytes through a prostanoid pathway

Affiliations
  • PMID: 9684735
Free article

Arachidonic acid inhibits lipogenic gene expression in 3T3-L1 adipocytes through a prostanoid pathway

M K Mater et al. J Lipid Res. 1998 Jul.
Free article

Abstract

This report examines the effect of polyunsaturated fatty acids (PUFA) on lipogenic gene expression in cultured 3T3-L1 adipocytes. Arachidonic acid (20:4, n-6) and eicosapentaenoic acid (20:5, n-3) suppressed mRNAs encoding fatty acid synthase (FAS) and S14, but had no effect on beta-actin. Using a clonal adipocyte cell line containing a stably integrated S14CAT fusion gene, oleic acid (18:1, n-9), arachidonic acid (20:4, n-6) and eicosapentaenoic acid (20:5, n-3) inhibited chloramphenicol acetyltransferase (CAT) activity with an ED50 of 800, 50, and 400 microM, respectively. Given the high potency of 20:4, n-6, its effect on adipocyte gene expression was characterized. Arachidonic acid suppressed basal CAT activity, but did not affect glucocorticoid-mediated induction of S14CAT expression. The effect of 20:4, n-6 on S14CAT expression was blocked by an inhibitor of cyclooxygenase implicating involvement of prostanoids. Prostaglandins (PGE2 and PGF2alpha at 10 microM) inhibited CAT activity through a pertussis toxin-sensitive Gi/Go-coupled signalling cascade. Our results suggest that 20:4, n-6 inhibits lipogenic gene expression in 3T3-L1 adipocytes through a prostanoid pathway. This mechanism of control differs from the polyunsaturated fatty acid-mediated suppression of hepatic lipogenic gene expression.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources