Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Aug;87(8):922-5.
doi: 10.1021/js980042+.

Microfabricated microneedles: a novel approach to transdermal drug delivery

Affiliations

Microfabricated microneedles: a novel approach to transdermal drug delivery

S Henry et al. J Pharm Sci. 1998 Aug.

Erratum in

  • J Pharm Sci 1998 Sep;88(9):948

Abstract

Although modern biotechnology has produced extremely sophisticated and potent drugs, many of these compounds cannot be effectively delivered using current drug delivery techniques (e.g., pills and injections). Transdermal delivery is an attractive alternative, but it is limited by the extremely low permeability of skin. Because the primary barrier to transport is located in the upper 10-15 micron of skin and nerves are found only in deeper tissue, we used a reactive ion etching microfabrication technique to make arrays of microneedles long enough to cross the permeability barrier but not so long that they stimulate nerves, thereby potentially causing no pain. These microneedle arrays could be easily inserted into skin without breaking and were shown to increase permeability of human skin in vitro to a model drug, calcein, by up to 4 orders of magnitude. Limited tests on human subjects indicated that microneedles were reported as painless. This paper describes the first published study on the use of microfabricated microneedles to enhance drug delivery across skin.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources