Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Aug;275(2):C571-80.
doi: 10.1152/ajpcell.1998.275.2.C571.

Regulation of KCa current by store-operated Ca2+ influx depends on internal Ca2+ release in HSG cells

Affiliations

Regulation of KCa current by store-operated Ca2+ influx depends on internal Ca2+ release in HSG cells

X Liu et al. Am J Physiol. 1998 Aug.

Abstract

This study examines the Ca2+ influx-dependent regulation of the Ca2+-activated K+ channel (KCa) in human submandibular gland (HSG) cells. Carbachol (CCh) induced sustained increases in the KCa current and cytosolic Ca2+ concentration ([Ca2+]i), which were prevented by loading cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid (BAPTA). Removal of extracellular Ca2+ and addition of La3+ or Gd3+, but not Zn2+, inhibited the increases in KCa current and [Ca2+]i. Ca2+ influx during refill (i.e., addition of Ca2+ to cells treated with CCh and then atropine in Ca2+-free medium) failed to evoke increases in the KCa current but achieved internal Ca2+ store refill. When refill was prevented by thapsigargin, Ca2+ readdition induced rapid activation of KCa. These data provide further evidence that intracellular Ca2+ accumulation provides tight buffering of [Ca2+]i at the site of Ca2+ influx (H. Mogami, K. Nakano, A. V. Tepikin, and O. H. Petersen. Cell 88: 49-55, 1997). We suggest that the Ca2+ influx-dependent regulation of the sustained KCa current in CCh-stimulated HSG cells is mediated by the uptake of Ca2+ into the internal Ca2+ store and release via the inositol 1,4,5-trisphosphate-sensitive channel.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources