Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998;20(2-3):164-79.
doi: 10.1159/000017311.

Age-dependent neurobehavioral plasticity following forebrain dopamine depletions

Affiliations
Review

Age-dependent neurobehavioral plasticity following forebrain dopamine depletions

J P Bruno et al. Dev Neurosci. 1998.

Abstract

The differential neurobehavioral effects of forebrain dopamine (DA) depletions in neonatal and adult rats are reviewed. In contrast to the severe and long-lasting parkinsonian sensorimotor deficits seen in rats sustaining large DA depletions as adults, rats comparably depleted as neonates are spared from these gross behavioral deficits. While DA released from residual striatal DA terminals remains necessary for the gradual recovery of sensorimotor function in rats lesioned as adults and the sparing from deficits in rats lesioned as neonates, the specific roles of D1- and D2-like receptors differ between the two age groups. Coactivation of striatal D1 and D2 receptors by residual DA is necessary for the expression of sensorimotor behavior in rats depleted of DA as adults (and in intact rats) whereas activation of either D1 or D2 receptors is sufficient for these behaviors in rats depleted of DA as neonates. We discuss the D1/D2 modulation of several important markers for striatal transmission (acetylcholine release from interneurons, induction of c-fos, and the expression of GAD65 mRNA in striatal efferents) as potential mechanisms underlying this striking age-dependent plasticity following forebrain DA depletions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources