Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1998 Aug;116(2):327-34.
doi: 10.1016/s0022-5223(98)70134-5.

Normoxic cardiopulmonary bypass reduces oxidative myocardial damage and nitric oxide during cardiac operations in the adult

Affiliations
Free article
Clinical Trial

Normoxic cardiopulmonary bypass reduces oxidative myocardial damage and nitric oxide during cardiac operations in the adult

K Ihnken et al. J Thorac Cardiovasc Surg. 1998 Aug.
Free article

Abstract

Objective: Hyperoxic cardiopulmonary bypass is widely used during cardiac operations in the adult. This management may cause oxygenation injury induced by oxygen-derived free radicals and nitric oxide. Oxidative damage may be significantly limited by maintaining a more physiologic oxygen tension strategy (normoxic cardiopulmonary bypass).

Methods: During elective coronary artery bypass grafting, 40 consecutive patients underwent either hyperoxic (oxygen tension = 400 mm Hg) or normoxic (oxygen tension = 140 mm Hg) cardiopulmonary bypass. At the beginning and the end of bypass this study assessed polymorphonuclear leukocyte elastase, nitrate, creatine kinase, and lactic dehydrogenase, antioxidant levels, and malondialdehyde in coronary sinus blood. Cardiac index was measured before and after cardiopulmonary bypass.

Results: There was no difference between groups with regard to age, sex, severity of disease, ejection fraction, number of grafts, duration of cardiopulmonary bypass, or ischemic time. Hyperoxic bypass resulted in higher levels of polymorphonuclear leukocyte elastase (377 +/- 34 vs 171 +/- 32 ng/ml, p = 0.0001), creatine kinase 672 +/- 130 vs 293 +/- 21 U/L, p = 0.002), lactic dehydrogenase (553 +/- 48 vs 301 +/- 12 U/L, p = 0.003), antioxidants (1.97 +/- 0.10 vs 1.41 +/- 0.11 mmol/L, p = 0.01), malondialdehyde (1.36 +/- 0.1 micromol/L,p = 0.005), and nitrate (19.3 +/- 2.9 vs 10.1 +/- 2.1 micromol/L, p = 0.002), as well as reduction in lung vital capacity (66% +/- 2% vs 81% +/- 1%,p = 0.01) and forced 1-second expiratory volume (63% +/- 10% vs 93% +/- 4%, p = 0.005) compared with normoxic management. Cardiac index after cardiopulmonary bypass at low filling pressure was similar between groups (3.1 +/- 0.2 vs 3.3 +/- 0.3 L/min per square meter). [Data are mean +/- standard error (analysis of variance), with p values compared with an oxygen tension of 400 mm Hg.]

Conclusions: Hyperoxic cardiopulmonary bypass during cardiac operations in adults results in oxidative myocardial damage related to oxygen-derived free radicals and nitric oxide. These adverse effects can be markedly limited by reduced oxygen tension management. The concept of normoxic cardiopulmonary bypass may be applied to surgical advantage during cardiac operations.

PubMed Disclaimer

Comment in

MeSH terms