Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Aug 24;398(2):241-56.
doi: 10.1002/(sici)1096-9861(19980824)398:2<241::aid-cne6>3.0.co;2-0.

Macrophage and microglia-like cells in the avian inner ear

Affiliations

Macrophage and microglia-like cells in the avian inner ear

S A Bhave et al. J Comp Neurol. .

Abstract

Recent studies suggest that macrophages may influence early stages of the process of hair cell regeneration in lateral line neuromasts; numbers of macrophages were observed to increase prior to increases in hair cell progenitor proliferation, and macrophages have the potential to secrete mitogenic growth factors. We examined whether increases in the number of leukocytes present in the in vivo avian inner ear precede the proliferation of hair cell precursors following aminoglycoside insult. Bromodeoxyuridine (BrdU) immunohistochemistry was used to identify proliferating cells in chicken auditory and vestibular sensory receptor epithelia. LT40, an antibody to the avian homologue of common leukocyte antigen CD45, was used to label leukocytes within the receptor epithelia. Macrophages and, surprisingly, microglia-like cells are present in normal auditory and vestibular sensory epithelia. After hair cell loss caused by treatment with aminoglycosides, numbers of macrophage and microglia-like cells increase in the sensory epithelium. The increase in macrophage and microglia-like cell numbers precedes a significant increase in sensory epithelial cell proliferation. The results suggest that macrophage and microglia-like cells may play a role in releasing early signals for cell cycle progression in damaged inner ear sensory epithelium.

PubMed Disclaimer

Publication types

LinkOut - more resources