Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 1998 Aug;50(2):157-63.
doi: 10.1016/s0090-3019(97)00411-4.

Three-dimensional localization of subclinical ictal activity by magnetoencephalography: correlation with invasive monitoring

Affiliations
Case Reports

Three-dimensional localization of subclinical ictal activity by magnetoencephalography: correlation with invasive monitoring

H Ishibashi et al. Surg Neurol. 1998 Aug.

Abstract

Background: Although magnetoencephalography (MEG) provides accurate information on the spatial distribution and temporal patterns of the "interictal" epileptic activities, it is interictal in nature and therefore also prone to all the problems associated with interictal data.

Methods: We investigated the subclinical "ictal" epileptic activity with a 37-channel, large-array biomagnetometer and mapped the data onto a three-dimensional image in a patient with intractable frontal lobe epilepsy. Dipole source localization was calculated based on magnetic fields for both the interictal and subclinical ictal activities.

Results: The current dipoles of the interictal MEG spikes (MEG irritative zone) were revealed to be scattered in the left anterior frontal lobe, whereas that of the subclinical ictal onset (MEG subclinical ictal onset zone) was surrounded by the interictal dipole cluster. The dipole source localization of the propagating activities was not calculated with a single dipole model. The MEG subclinical ictal onset zone correlated well with the ictal onset zone subsequently recorded by invasive subdural electrophysiological monitoring. After multiple subpial transection of the deduced epileptogenic area, a dramatic reduction of the seizures occurred.

Conclusion: These results illustrate the potential of MEG for localizing the epileptogenic foci with high spatial and temporal resolution.

PubMed Disclaimer

Publication types

LinkOut - more resources