Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Aug;47(8):1224-30.
doi: 10.2337/diab.47.8.1224.

In situ characterization of nonmitochondrial Ca2+ stores in individual pancreatic beta-cells

Affiliations

In situ characterization of nonmitochondrial Ca2+ stores in individual pancreatic beta-cells

A Tengholm et al. Diabetes. 1998 Aug.

Abstract

Free Ca2+ was measured in intracellular stores of individual mouse pancreatic beta-cells using dual-wavelength microfluorometry and the low-affinity Ca2+ indicator furaptra. Controlled permeabilization of the plasma membrane with 4 micromol/l digitonin revealed that 22% of the furaptra was trapped in intracellular nonnuclear compartments. When 3 mmol/l ATP and 200 nmol/l Ca2+ were simultaneously present, this cation rapidly accumulated in the organelle pool, reaching an average concentration of 200-500 micromol/l. Whereas agents affecting the mitochondrial function (5 mmol/l succinate, 2 micromol/l ruthenium red, or 10 micromol/l antimycin A + 2 microg/ml oligomycin) had little effects, the Ca2+-ATPase inhibitor thapsigargin released 92% of the Ca2+ mobilizable with the ionophore Br-A23187. Digital imaging revealed regional differences in the organelle Ca2+. The regions with the highest Ca2+ concentration were particularly responsive to inositol 1,4,5-trisphosphate (IP3). IP3 mobilized Ca2+ in a dose-dependent way with half-maximal and maximal effects at about 1 and 5 micromol/l, respectively. High concentrations of IP3 released about half of the thapsigargin-sensitive Ca2+, but there were no responses to agents known to activate ryanodine receptors, such as 10 mmol/l caffeine, 0.1-1 micromol/l ryanodine, or 1-5 micromol/l cyclic ADP ribose. The results reinforce the concept that mobilization of intracellular Ca2+ in the pancreatic beta-cell is mediated by IP3 receptors rather than ryanodine receptors.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources