Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Aug;47(8):1243-52.
doi: 10.2337/diab.47.8.1243.

Insulin receptor signaling in the beta-cell influences insulin gene expression and insulin content: evidence for autocrine beta-cell regulation

Affiliations

Insulin receptor signaling in the beta-cell influences insulin gene expression and insulin content: evidence for autocrine beta-cell regulation

G G Xu et al. Diabetes. 1998 Aug.

Abstract

The insulin receptor (IR) is expressed by insulin-secreting beta-cells, but its cellular function is unknown. We transfected betaTC6-F7 beta-cells with cDNAs encoding either wild-type or mutant kinase-inactive (A/K1018) IRs, and by fluorescence-activated cell sorting generated polyclonal beta-cell lines that overexpressed each receptor type at levels two- to fourfold higher than the parental cells. Beta-cells overexpressing wild-type IRs had a proportional increase in insulin-stimulated tyrosine kinase activity; no change occurred in beta-cells expressing the mutant IR. We observed a threefold increase in cellular insulin content in beta-cells that overexpressed the wild-type IR, as determined by radioimmunoassay. This increase occurred despite a fivefold elevated rate of both basal and 10 mmol/l glucose-induced insulin secretion. Fractional insulin secretion (percentage of total cell insulin releasable at 10 mmol/l glucose) was unchanged in beta-cells overexpressing the wild-type IR compared with the parental beta-cell line. Insulin content and insulin secretion were unaffected by overexpression of kinase-inactive IRs. Steady-state insulin mRNA levels were elevated twofold in the beta-cells overexpressing the wild-type IR and unchanged in the beta-cells expressing the kinase-inactive receptor, as determined by Northern blot analysis. The rate of insulin mRNA degradation measured in the presence of 5 microg/ml actinomycin D was not significantly affected in either cell line. In the absence of glucose, the basal level of (pro)insulin biosynthesis in the beta-cells overexpressing the wild-type IR increased significantly (61%) compared with the beta-cells transfected with the kinase-inactive IR. These data indicate that IR signaling can regulate insulin gene transcription and can modulate the steady-state insulin content of beta-cells.

PubMed Disclaimer

Publication types