Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Aug 13;41(17):3298-302.
doi: 10.1021/jm980134b.

Synthesis and pharmacological evaluation of N,N'-diarylguanidines as potent sodium channel blockers and anticonvulsant agents

Affiliations

Synthesis and pharmacological evaluation of N,N'-diarylguanidines as potent sodium channel blockers and anticonvulsant agents

N L Reddy et al. J Med Chem. .

Abstract

Synthesis and structure-activity relationships (SAR) are described for a series of N,N'-diarylguanidines related to N-acenaphth-5-yl-N'-(4-methoxynaphth-1-yl)guanidine (3) as anticonvulsants through blockade of sodium channels. SAR studies on compound 3 led to several simpler diphenylguanidines with improved in vitro and in vivo activity. Compounds were screened for blockade of sodium channels in a veratridine-induced [14C]guanidinium influx assay (type IIA sodium channels) and for anticonvulsant activity in the audiogenic DBA/2 mouse model. Results indicated that N, N'-diphenylguanidines substituted with flexible and moderate size lipophilic groups were preferred over aryl and/or hydrophilic groups for biological activity. Among the compounds studied, n-butyl- and/or n-butoxy-containing guanidines showed superior biological activity. A possible relationship between in vitro and in vivo activity of this compound series and their measured/calculated lipophilicities was investigated. Compounds of this series showed only weak NMDA ion channel-blocking activity indicating that the anticonvulsant activity of these compounds is unlikely to be mediated by NMDA ion channels but, more likely, by acting at voltage-gated sodium channels.

PubMed Disclaimer

MeSH terms

LinkOut - more resources