Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Aug 21;273(34):21455-62.
doi: 10.1074/jbc.273.34.21455.

Prodigiosins as a new group of H+/Cl- symporters that uncouple proton translocators

Affiliations
Free article

Prodigiosins as a new group of H+/Cl- symporters that uncouple proton translocators

T Sato et al. J Biol Chem. .
Free article

Abstract

We reported previously (Kataoka, T., Muroi, M., Ohkuma, S., Waritani, T., Magae, J., Takatsuki, A., Kondo, S., Yamasaki, M., and Nagai, K. (1995) FEBS Lett. 359, 53-59) that prodigiosin 25-C uncoupled vacuolar H+-ATPase, inhibited vacuolar acidification, and affected glycoprotein processing. In the present study we show that prodigiosins (prodigiosin, metacycloprodigiosin, and prodigiosin 25-C) inhibit the acidification activity of H+-ATPase chloride dependently, but not membrane potential formation or ATP hydrolysis activity, and suggest that they promote H+/Cl- symport (or OH-/Cl- exchange, in its equivalence) across vesicular membranes. In fact, prodigiosins displayed H+/Cl- symport activity on liposomal membranes. First of all, they decreased the internal pH of liposomes depending on the external chloride, and raised it depending on the internal chloride when external buffer was free from chloride. Second, their effect was electroneutral and not seriously affected by the application of an inside positive membrane potential generated by K+ and valinomycin. Finally, they promoted the uptake of [36Cl] from external buffers with concomitant intraliposomal acidification when external pH was acidic relative to liposome interior. As prodigiosins hardly inhibit the catalytic activity (ATP hydrolysis) unlike well known OH-/Cl- exchangers (for example, tributyltin chloride), they should provide powerful tools for the study of molecular machinery and cellular activities involving transport of protons and/or chloride.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources