Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Aug;80(2):621-7.
doi: 10.1152/jn.1998.80.2.621.

Activation of group I mGluRs increases spontaneous IPSC frequency in rat frontal cortex

Affiliations
Free article

Activation of group I mGluRs increases spontaneous IPSC frequency in rat frontal cortex

Z Chu et al. J Neurophysiol. 1998 Aug.
Free article

Abstract

The effect of metabotropic glutamate receptor (mGluR) activation on inhibitory synaptic transmission was examined by using whole cell patch-clamp recordings. Spontaneous (s) and miniature (m) inhibitory postsynaptic currents (IPSCs) were recorded from visually identified layer II/III pyramidal neurons in rat neocortex in vitro. Excitatory postsynaptic currents (EPSCs) were blocked by using bath application of 20 microM D(-)2-amino-5-phosphonovaleric acid and 10 microM 6-cyano-7-nitroquinoxaline-2,3-dione. In the presence of 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (30-100 microM), Lp4-quisqualate (5 microM), and the group I selective mGluR agonist (S)-3,5-dihydroxyphenylglycine (100 microM), the frequency of sIPSCs was increased. Decay kinetics of sIPSCs were unaffected. No enhancement of mIPSCs was observed. Bath application of group II (2S,3S,4S-alpha-carboxycyclopropyl-glycine; 5 microM) and group III selective mGluR agonists (L-2-amino-4-phosphonobutyric acid; 100 microM) had no detectable effects on the frequency or amplitude of sIPSCs. These findings indicate that activation of group I mGluRs (mGluR1 and/or mGluR5) enhances gamma-aminobutyric acid-mediated synaptic inhibition in layer II/III pyramidal neurons in neocortex. The lack of effect on mIPSCs suggests a presynaptic action via excitation of inhibitory interneurons.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources