Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Sep 1;165(1):11-8.
doi: 10.1007/s002329900416.

Voltage-dependent closing of porin channels: analysis of relaxation kinetics

Affiliations

Voltage-dependent closing of porin channels: analysis of relaxation kinetics

A Mathes et al. J Membr Biol. .

Abstract

The anion-selective porin Omp34 from Acidovorax delafieldii was unidirectionally reconstituted in planar lipid membranes. Pore closing was recorded particularly at low salt conditions for negative and positive membrane potentials in the range of +/-10 to +/-100 mV. Relaxation curves were fitted by exponential functions in order to describe and to analyze the voltage-dependent behavior. Omp34 exhibited the following characteristics: (i) The channels are asymmetric with respect to closing characteristics and corresponding functional parameters. (ii) Relaxation curves can be fitted by a single exponential function in the low voltage range only, at >/=40 mV combinations of two exponential functions are required. (iii) Beyond 60 to 70 mV a third exponential function is necessary to fit the fast closing components properly. The time constants differ by two to three orders of magnitude. (iv) Hysteresis in I-V-diagrams originate from slow relaxation components which are different for positive and negative voltages. The implications for models aiming at description of voltage-dependent closing are discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources