Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Aug;124(2):248-53.

Butyrate inhibits colon carcinoma cell growth through two distinct pathways

Affiliations
  • PMID: 9706145

Butyrate inhibits colon carcinoma cell growth through two distinct pathways

S Archer et al. Surgery. 1998 Aug.

Abstract

Background: Dietary fiber and the resultant increase in colonic butyrate levels protect against colon carcinogenesis. Previous studies have shown that p21 and histone hyperacetylation are important in basal growth inhibition by butyrate. This study was designed to elucidate other mechanism underlying the butyrate effects on cell growth.

Methods: HT-29 colon carcinoma cells (standard medium or medium lacking serum) were treated with sodium butyrate (NaBu), epidermal growth factor (EGF), or both. Northern blot analyses were performed with cDNA probes specific for c-fos, c-jun, and actin. Cell growth was measured by 3H-thymidine incorporation. Enzyme-linked immunosorbent assay (ELISA) was used to quantify EGF receptor levels.

Results: Butyrate and serum starvation (SS) both induced a cell cycle withdrawal by 24 hours. In response to EGF treatment, SS cells exhibited a growth spurt and induced c-fos and c-jun proto-oncogene expression, whereas butyrate-treated cells exhibited minimal growth response to EGF. This relative unresponsiveness to EGF in butyrate-treated cells corresponded to a dramatic decline in EGF receptor levels when compared to untreated controls.

Conclusions: Butyrate appears to inhibit colon cancer cell growth by two mechanisms, one involving histone hyperacetylation and p21 induction and the other related to impaired EGF-responsiveness.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources