Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jun 15;70(1):43-61.
doi: 10.1016/s0001-706x(98)00007-2.

Modification of kinetoplast DNA minicircle composition in pentamidine-resistant Leishmania

Affiliations

Modification of kinetoplast DNA minicircle composition in pentamidine-resistant Leishmania

M Basselin et al. Acta Trop. .

Abstract

Pentamidine, an antiprotozoal drug, was shown to have various cellular and molecular targets depending on the organism. In Leishmania, ultrastructural modifications of kinetoplast and mitochondria have been observed but no data is available on cellular and molecular events involved in development of pentamidine-resistance. The absence of modification of minicircle DNA in pentamidine treated L. donovani and L. amazonensis promastigotes suggested that topoisomerase II activity is not a target. This result was confirmed by quantitation of the enzyme by immunodetection. Southern blot experiments indicated that the kDNA network was altered in resistant clones. Molecular cloning and sequence analysis of kDNA minicircles showed transkinetoplastidy hitherto reported only for arsenite- and tunicamycin-resistant Leishmania. Comparison of wild-type and resistant sequences showed only 32-51% homology. The AT-rich regions, known as binding sites, of the drug occurred less frequently in the resistant clones and their locations were different. These minicircle sequence modifications leading to decreased binding sites for the drug might contribute to pentamidine-resistance in Leishmania.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources