Mitochondrial DNA transmission of the mitochondrial defect in Parkinson's disease
- PMID: 9708539
- DOI: 10.1002/ana.410440207
Mitochondrial DNA transmission of the mitochondrial defect in Parkinson's disease
Abstract
Several groups have identified mitochondrial complex I deficiency in Parkinson's disease (PD) substantia nigra and in platelets. A search for any mitochondrial DNA (mtDNA) mutation underlying this defect has not yet produced any consistent result. We have made use of a mtDNA-less (p0) cell line to determine if the complex I deficiency follows the genomic transplantation of platelet mtDNA. From a preselected group of PD patients with low platelet complex I activity, 7 patients were used for detailed study. All 7 patients were used for mixed cybrid analysis and demonstrated a selective 25% deficiency of complex I activity. Individual clonal analysis of A549 p0/PD platelet fusion cybrids from 1 of the patients expressed combined complex I and IV deficiencies with 25% and 20% decreased activities in the PD clones, respectively. Histocytochemical, immunocytochemical, and cellular functional imaging studies of these clones showed the cells within the clones were heterogeneous with respect to cytochrome c oxidase (COX) function, COX I content, and mitochondrial respiratory chain activity. These results are in agreement with a previous study and support the proposition that an mtDNA abnormality may underlie the mitochondrial defect in at least a proportion of PD patients. This p0 technology may serve as a means to identify the subgroup of PD patients in whom an mtDNA defect may contribute to development of the disease.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
