Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Aug;83(8):2810-6.
doi: 10.1210/jcem.83.8.5022.

Mechanisms of whole-body glycogen deposition after oral glucose in normal subjects. Influence of the nutritional status

Affiliations

Mechanisms of whole-body glycogen deposition after oral glucose in normal subjects. Influence of the nutritional status

F Féry et al. J Clin Endocrinol Metab. 1998 Aug.

Abstract

It is known that prior fasting enhances whole-body glycogen retention after glucose ingestion. To identify the involved mechanisms, 33 normal volunteers underwent a total fast, varying between 14 h and 4 days, and ingested thereafter 75 g glucose labeled with [14C]glucose. Measurements of oral glucose oxidation (expired 14CO2, corrected for incomplete recovery) and total carbohydrate (CHO) oxidation (indirect calorimetry) were performed over the following 5 h. These data allowed us to calculate oral glucose storage (uptake oxidation), glycogen oxidation (CHO oxidation - oral glucose oxidation), and net CHO balance (oral glucose uptake - CHO oxidation). As compared with an overnight fast, prolonged fasting (4 days) inhibited the uptake (64.8 vs. 70.3 g/5 h; P < 0.01) and the oxidation (10.9 vs. 20.0 g/5 h; P < 0.001) of oral glucose and stimulated slightly its conversion to glycogen (53.9 vs. 50.3 g/5 h; P < 0.05). The latter effect played only a minor role in the marked increase in net CHO balance (52.3 vs. 25.2 g/5 h; P < 0.001), which was almost entirely related to a decrease in glycogen oxidation (1.6 vs. 25.1 g/5 h; P < 0.001). Considering the whole series of data, including intermediate durations of fast, it was observed that the modifications in postprandial CHO metabolism, induced by fasting, correlated strongly with basal CHO oxidation, suggesting that the degree of initial glycogen depletion is a major determinant of glycogen oxidation and net CHO storage. Thus, prior fasting stimulates postprandial glycogen retention, mainly through an inhibition of the glycogen turnover that exists in overnight-fasted subjects, during the absorptive period.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources