Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Aug;36(2):190-205.
doi: 10.1002/(sici)1097-4695(199808)36:2<190::aid-neu7>3.0.co;2-x.

The neuronal stem cell of the olfactory epithelium

Affiliations
Free article
Review

The neuronal stem cell of the olfactory epithelium

A L Calof et al. J Neurobiol. 1998 Aug.
Free article

Abstract

The vertebrate olfactory epithelium (OE) is a system in which behavior of neuronal progenitor cells can be observed and manipulated easily. It is morphologically and functionally similar to embryonic germinal neuroepithelia, but is simpler in that it produces large numbers of a single type of neuron, the olfactory receptor neuron (ORN). The OE is amenable to tissue culture, gene transfer, and in vivo surgical approaches, and these have been exploited in experiments aimed at understanding the characteristics of OE neuronal progenitor cells. This has led to the realization that the ORN lineage contains at least three distinct stages of proliferating neuronal progenitor cells (including a stem cell), each of which represents a point at which growth control can be exerted. Neurogenesis proceeds continually in the OE, and studies in vivo have shown that this is a regulated process that serves to maintain the number of ORNs at a particular level. These studies suggest that OE neuronal progenitors-which are in close physical proximity to ORNs-can "read" the number of differentiated neurons in their environment and regulate production of new neurons accordingly. Putative neuronal stem cells of the OE have been identified in vitro, and studies of these cells indicate that ORNs produce a signal that feeds back to inhibit neurogenesis. This inhibitory signal may be exerted at the level of the stem cell itself. Recent studies to identify this signal, as well as endogenous stimulatory signals that may be important in regulating OE neurogenesis, are also discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types