A glutamate bridge is essential for dimer stability and metal selectivity in manganese superoxide dismutase
- PMID: 9712831
- DOI: 10.1074/jbc.273.35.22188
A glutamate bridge is essential for dimer stability and metal selectivity in manganese superoxide dismutase
Abstract
In Escherichia coli manganese superoxide dismutase (MnSOD), the absolutely conserved Glu170 of one monomer is hydrogen-bonded to the Mn ligand His171 of the other monomer, forming a double bridge at the dimer interface. Point mutation of Glu170 --> Ala destabilizes the dimer structure, and the mutant protein occurs as a mixture of dimer and monomer species. The purified E170A MnSOD contains exclusively Fe and is devoid of superoxide dismutase activity. E170A Fe2-MnSOD closely resembles authentic FeSOD in terms of spectroscopic properties, anion interactions and pH titration behavior. Reconstitution of E170A Fe2-MnSOD with Mn(II) salts does not restore superoxide dismutase activity despite the spectroscopic similarity between E170A Mn2-MnSOD and wild type Mn2-MnSOD. Growth of sodA+ and sodA- E. coli containing the mutant plasmid pDT1-5(E170A) is impaired, suggesting that expression of mutant protein is toxic to the host cells.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
