Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1998 Aug 4;98(5):422-8.
doi: 10.1161/01.cir.98.5.422.

Which arterial and cardiac parameters best predict left ventricular mass?

Affiliations
Comparative Study

Which arterial and cardiac parameters best predict left ventricular mass?

C H Chen et al. Circulation. .

Abstract

Background: Many cardiovascular and noncardiovascular parameters are thought to be determinants of left ventricular mass (LVM). Complicated interactions necessitate the simultaneous measurement and consideration of each to determine their individual and collective impact on LVM. We undertook such a comprehensive study.

Methods and results: The influence of anthropometry, cardiac size and contractility, arterial structure and function, as well as indices of lifestyle, physical activity, and dietary salt intake on LVM (by two-dimensionally guided M-mode echocardiography) was analyzed in 1315 Chinese subjects who were either normotensive or had untreated hypertension. Effects of many cardiac and arterial factors were assessed. In univariate analysis, almost all measured noncardiovascular, cardiac, and arterial variables were significantly correlated with LVM. In multivariate linear regression analyses, when age, sex, body habitus, fasting serum C-peptide level, dietary salt, physical activity, and lifestyle were accounted for, the optimum multivariate linear regression main effects model had an adjusted model r2 of 0.740, with 98% of the model variance accounted for by the 5 independent determinants of LVM: stroke volume (49.6%), systolic blood pressure (30.7%), contractility (14.7%), body mass index (1.8%), and aortic root diameter (1.6%). Other proposed arterial indices were significant independent determinants of LVM only when blood pressure was removed from the model and, even then, these indices not only resulted in less powerful prediction but also accounted for only a very small percentage of the total variance of LVM.

Conclusions: In a large population, we (1) confirmed that age, body habitus, and some indexes of arterial structure and function are independent determinants of LVM; (2) found aortic diameter to be an independent structural determinant of LVM; (3) demonstrated that the effects of the derived measures of arterial function were small and provided no better predictive power than blood pressure alone; and (4) showed that when the best measures of cardiac and vascular load were included, the single most potent predictor was an index of left ventricular size.

PubMed Disclaimer

Publication types

LinkOut - more resources