Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Aug 1;32(2):136-58.

Protein folding mechanisms and the multidimensional folding funnel

Affiliations
  • PMID: 9714155

Protein folding mechanisms and the multidimensional folding funnel

N D Socci et al. Proteins. .

Abstract

An important idea that emerges from the energy landscape theory of protein folding is that subtle global features of the protein landscape can profoundly affect the apparent mechanism of folding. The relationship between various characteristic temperatures in the phase diagrams and landmarks in the folding funnel at fixed temperatures can be used to classify different folding behaviors. The one-dimensional picture of a folding funnel classifies folding kinetics into four basic scenarios, depending on the relative location of the thermodynamic barrier and the glass transition as a function of a single-order parameter. However, the folding mechanism may not always be quantitatively described by a single-order parameter. Several other order parameters, such as degree of secondary structure formation, collapse and topological order, are needed to establish the connection between minimalist models and proteins in the laboratory. In this article we describe a simple multidimensional funnel based on two-order parameters that measure the degree of collapse and topological order. The appearance of several different "mechanisms" is illustrated by analyzing lattice models with different potentials and sequences with different degrees of design. In most cases, the two-dimensional analysis leads to a classification of mechanisms totally in keeping with the one-dimensional scheme, but a topologically distinct scenario of fast folding with traps also emerges. The nature of traps depends on the relative location of the glass transition surface and the thermodynamic barrier in the multidimensional funnel.

PubMed Disclaimer

Publication types