Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Aug;45(2):239-48; discussion 248-9.
doi: 10.1097/00005373-199808000-00007.

Prolonged severe hemorrhagic shock and resuscitation in rats does not cause subtle brain damage

Affiliations

Prolonged severe hemorrhagic shock and resuscitation in rats does not cause subtle brain damage

P Carrillo et al. J Trauma. 1998 Aug.

Abstract

Objective: Some patients who survived severe hemorrhagic shock (HS) seem to exhibit persistent subtle neurobehavioral deficits. This finding is of concern if limited hypotensive fluid resuscitation is applied in hypotensive victims with penetrating trauma. This study was designed to determine whether subtle brain damage would occur in rats after severe prolonged HS. We hypothesized that rats surviving HS with mean arterial pressure (MAP) controlled at 40 mm Hg for 60 minutes would recover with slight permanent brain damage in terms of cognitive function without morphologic loss of neurons and that rats surviving HS with MAP at 30 mm Hg for 45 minutes (60 minutes were not tolerated) would have grossly abnormal brain function and loss of neurons.

Methods: Under light nitrous oxide-halothane anesthesia, spontaneously breathing rats underwent MAP-controlled HS (HS phase I), volume resuscitation to normotension and invasive monitoring to 60 minutes (resuscitation phase II), and observation to 10 days with detailed assessment of cognitive function (observation phase III). Five conscious rats served as normal controls. Three treatment groups were compared: group 1, shams (11 of 12 rats survived to 10 days); group 2, HS at MAP 40 mm Hg for 60 minutes (10 of 17 rats survived); group 3, HS at 30 mm Hg for 45 minutes (10 of 14 rats survived).

Results: On post-HS day 10, all normal controls and all survivors of all three groups were functionally normal with overall performance category = 1 (normal) (overall performance category 1 = normal, 5 = death) and neurologic deficit scores < or = 7% (neurologic deficit scores 0-10% = normal, 100% = brain death). Post-HS beam balance, beam walking, and Morris water maze test results in HS groups 2 and 3 showed latencies not significantly different from those in shams and normal controls. Light microscopic scoring of five selectively vulnerable brain regions and other regions in five coronal sections revealed no ischemic (pyknotic, shrunken, eosinophilic) neurons in any of the survivors to 10 days. There was no statistical difference between normal controls, sham animals, and both HS groups in the number of normal neurons counted in the hippocampal CA-1 region in the 10-day survivors. All nonsurvivors died with intestinal necrosis.

Conclusion: HS at MAP 40 mm Hg for 60 minutes or MAP 30 mm Hg for 45 minutes does not cause subtle functional or histologic brain damage in surviving rats. Controlling MAP at 30 mm Hg carries a risk of sudden cardiac arrest. These data suggest that limited fluid resuscitation, to maintain MAP at about 40 mm Hg, as recommended for victims of penetrating trauma with uncontrolled HS, is safe for the brain.

PubMed Disclaimer

Publication types

LinkOut - more resources