Taxanes propagate apoptosis via two cell populations with distinctive cytological and molecular traits
- PMID: 9716185
Taxanes propagate apoptosis via two cell populations with distinctive cytological and molecular traits
Abstract
Taxol and Taxotere propagate apoptosis in Jurkat T cells via molecular signals that coincide with the appearance of two distinct cell populations. Cell cycle arrest in G2-M phase and activation of cell cycle-dependent kinases begin within 2 h and extend to most cells by 16 h. Phosphorylation of Bcl-2 also begins within 2 h and intensifies from 2-16 h. Cell cycle arrest, activation of mitotic kinases, and phosphorylation of Bcl-2 coincided with the appearance of a population of metastable cells that accumulate YO-PRO-1 dye, are resistant to the caspase inhibitor carbobenzoxy-L-aspartyl-alpha-[(2,6-dichlorobenzoyl)oxy]methane, and have intact genomic DNA. Phosphorylation and deactivation of kinases that relay survival/mitogenesis signals in T cells begin after 8 h and are prominent by 12-16 h. Deactivated kinases include c-Raf-1, p44 extracellular receptor kinase, and the tyrosine kinases c-Lck and ZAP-70. Activation of Mr 40,000 and Mr 52,000 kinases is also prominent by 12-16 h. The modulation of all these kinases coincided with the activation of caspase-3 at 12 h and the appearance of a population of apoptotic cells that accumulate YO-PRO-1, are susceptible to the caspase inhibitor carbobenzoxy-L-aspartyl-alpha-[(2,6-dichloro-benzoyl)oxy]methane, and contain fragmented genomic DNA. This distinctive apoptosis signaling pathway may help account for the superior cytotoxic efficacy of taxanes in certain types of cancer.
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources
Research Materials
Miscellaneous