Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Aug 25;243(1):94-100.
doi: 10.1006/excr.1998.4149.

DMSO reduces CSF-1 receptor levels and causes apoptosis in v-myc immortalized mouse macrophages

Affiliations

DMSO reduces CSF-1 receptor levels and causes apoptosis in v-myc immortalized mouse macrophages

P Marthyn et al. Exp Cell Res. .

Abstract

We have investigated the antiproliferative potentialof dimethyl sulfoxide (DMSO) on v-myc immortalized mouse macrophages on account of the cytotoxic effect induced by DMSO on myeloid cells. DMSO caused significant apoptosis in two immortalized macrophage celllines constitutively secreting colony-stimulating factor 1 (CSF-1). In contrast to the results described for mouse erythroleukemia cells, DMSO did not markedly decrease the level of the Spi-1/PU.1 transcription factor. However, DMSO caused a specific reduction in the protein level of the CSF-1 receptor (CSF-1R) compared to the FcgammaRIIIA immunoglobulin receptor, v-myc, and beta-actin proteins. To investigate if the level of CSF-1R might inversely correlate with DMSO-induced cell death, we derived a macrophage culture (named DN-11) that could be cultured in the presence of DMSO. Immunoblot analysis of DN-11, grown with or without DMSO, revealed significant amounts of CSF-1R under both conditions, suggesting a pivotal role for CSF-1R in the survival of DMSO-treated macrophages. Therefore, in these cells, DMSO seems to trigger apoptosis by interrupting an autocrine survival loop involving the CSF-1 receptor.

PubMed Disclaimer

Substances

LinkOut - more resources