Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1998 Jun;76(3):317-325.
doi: 10.1016/S0304-3959(98)00062-1.

Effects of antihyperalgesic drugs on experimentally induced hyperalgesia in man

Affiliations
Clinical Trial

Effects of antihyperalgesic drugs on experimentally induced hyperalgesia in man

A Bickel et al. Pain. 1998 Jun.

Abstract

In a double-blind, cross-over study, ibuprofen (600 mg), a peripherally-acting selective kappa-opioid receptor agonist (7.5 mg), or placebo were given orally in experiments on healthy volunteers 1 h before assessment of pain thresholds to radiant heat and of pain ratings to controlled mechanical impact stimuli. Mechanical and thermal hyperalgesia had been induced 24 h before by irradiating skin patches on the ventral side of the upper leg. UVB irradiation induced mechanical and thermal hyperalgesia at radiation dosages of three times the minimal erythema dose. UVA irradiation resulted in an immediate erythema and a delayed tanning of the skin, however, no hyperalgesia was observed. For comparison another model of mechanical hyperalgesia was applied in the same experiments which has been previously proven sensitive to non-steroidal anti-inflammatory drugs (NSAIDs). In this model hyperalgesia was assessed, which develops during repetitive pinching of skin folds (pinch model). Ibuprofen significantly diminished heat and mechanical hyperalgesia induced by UVB, but had no effect on pain responses obtained from untreated skin. It also had an antihyperalgesic effect in the pinch stimulus paradigm. In contrast, the kappa-agonist showed no antihyperalgesic efficacy in the chosen models. It is concluded that the UVB model, as the pinch model, is suitable for establishing antihyperalgesic effects of NSAIDs, but probably not of kappa-receptor agonists, in healthy human volunteers. Compared to the pinch stimulus model, the UVB model offers additional advantages: (a) drugs may be tested after induction of the skin trauma by UV and this situation is more similar to the clinical use of antihyperalgesic drugs. (b) Since mechanical and thermal hyperalgesia is induced by UVB, drug effects can be tested upon both forms of hyperalgesia.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Adriaensen H, Gybels J, Handwerker HO, Van Hees J. Nociceptor discharges and sensations due to prolonged noxious mechanical stimulation – a paradox. Hum. Neurobiol. 1984;3:53-58.
    1. Antonijevic I, Mousa SA, Schafer M, Stein C. Perineurial defect and peripheral opioid analgesia in inflammation. J. Neurosci. 1995;15:165-172.
    1. Barber A, Bartoszyk GD, Bender HM, Gottschlich R, Greiner HE, Harting J, Mauler F, Minck KO, Murray RD, Simon M, Seyfried CAA. Pharmacological prophile of the novel, peripherally-selective κ-opioid agonist, EMD 61753. Br. J. Pharmacol. 1994;113:1317-1327.
    1. Beck PW, Handwerker HO, Zimmermann M. Nervous outflow from the cat's foot during noxious radiant heat stimulation. Brain Res. 1974;67:373-386.
    1. Benrath J, Eschenfelder C, Zimmermann M, Gillardon F. Calcitonin gene-related peptide, substance P and nitric oxide are involved in cutaneous inflammation following ultraviolet irradiation. Eur. J. Pharmacol. 1995;293:87-96.

Publication types

MeSH terms

LinkOut - more resources