Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Aug 25;37(34):11864-72.
doi: 10.1021/bi980512e.

Coupling of cobalt-carbon bond homolysis and hydrogen atom abstraction in adenosylcobalamin-dependent glutamate mutase

Affiliations

Coupling of cobalt-carbon bond homolysis and hydrogen atom abstraction in adenosylcobalamin-dependent glutamate mutase

E N Marsh et al. Biochemistry. .

Abstract

Adenosylcobalamin-dependent glutamate mutase catalyzes an unusual carbon skeleton rearrangement that proceeds through the formation of free radical intermediates generated by the substrate-induced cleavage of the coenzyme cobalt-carbon bond. The reaction was studied at 10 degrees C with various concentrations of L-glutamate and L-threo-3-methylaspartate and with use of stopped-flow spectroscopy to follow the formation of cob(II)alamin. Either substrate induces rapid formation of cob(II)alamin, which accumulates to account for about 25% of the total enzyme species in the steady state when substrate is saturating. Measurements of the rate constant for the formation of cob(II)alamin demonstrate that the enzyme accelerates the rate of homolysis of the cobalt-carbon bond by at least 10(12)-fold. Very large isotope effects on cob(II)alamin formation, of 28 and 35, are observed with deuterated L-glutamate and deuterated L-threo-3-methylaspartate, respectively. This implies a mechanism in which Co-C bond homolysis is kinetically coupled to substrate hydrogen abstraction. Therefore, adenosyl radical can only be formed as a high-energy intermediate only at very low concentrations on the enzyme. The magnitude of the isotope effects suggests that hydrogen tunneling may play an important role catalysis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources