Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Jul;63(7):874-84.

NO-synthase and nitrite-reductase components of nitric oxide cycle

Affiliations
  • PMID: 9721340
Review

NO-synthase and nitrite-reductase components of nitric oxide cycle

V P Reutov et al. Biochemistry (Mosc). 1998 Jul.

Abstract

On the basis of our own experimental data and analysis of data from the literature the existence of nitric oxide cycle in mammals is substantiated. Two components underlie the nitric oxide cycle: 1) the reaction catalyzed by NO-synthases (constitutive, inducible, and endothelial--NOS-I, -II, and -III); and 2) the nitrite-reductase reactions catalyzed by electron-donor systems with the participation of NADH, NADPH, flavoproteins, and heme-containing proteins. In mammalian cells NO is enzymatically formed from terminal guanidine nitrogen of L-arginine by a family of at least three distinct NOS isoenzymes. As a result of nonenzymatic/enzymatic NO oxidation, NO2- and NO3- ions are formed: L-Arg --> NO --> NO2-/NO3-. The reduction of NO2- ions to NO occurs via the nitrite-reductasereaction: NO2- + e- --> NO. The reduction of NO2- ions to NO is realized by electron-donor systems with the participation of NADH, NADPH, flavoproteins, and cytochrome oxidase in mitochondria and by NADH, NADPH, flavoproteins, and cytochrome P-450 in endoplasmic reticulum. In erythrocytes the reduction of NO2- ions to NO is catalyzed by electron-donor systems with participation of NADH, NADPH, flavoproteins, and deoxy-hemoglobin. The role of ascorbic acid and reduced glutathione should be noted among low-molecular-weight compounds. Thus, the presence of the nitric oxide cycle provides the cyclic transformation as follows: L-arginine --> NO --> NO2-/NO3- --> NO.

PubMed Disclaimer

LinkOut - more resources