Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Aug 24;83(4):415-22.
doi: 10.1161/01.res.83.4.415.

Novel mechanism of HERG current suppression in LQT2: shift in voltage dependence of HERG inactivation

Affiliations
Free article

Novel mechanism of HERG current suppression in LQT2: shift in voltage dependence of HERG inactivation

T Nakajima et al. Circ Res. .
Free article

Abstract

In a Xenopus oocyte heterologous expression system, we characterized the electrophysiology of 3 novel missense mutations of HERG identified in Japanese LQT2 families: T474I (within the S2-S3 linker), A614V, and V630L (in the outer mouth of pore-forming region). For each of the 3 mutations, injection of mutant cRNA alone did not express detectable currents. Coinjection of wild-type (WT) along with each mutant cRNA (T474I/WT, A614V/WT, and V630L/WT) suppressed HERG current in a dominant-negative manner, and the order of magnitude of current suppression was V630L/WT>A614V/WT>T474I/WT. In addition to decreases in slope conductance for all 3 mutants, the voltage dependence of steady-state inactivation was shifted to negative potentials for V630L/WT and A614V/WT. Consequently, channel availability at positive potentials was diminished, and inward rectification was enhanced for these 2 mutants. Thus, missense mutations of HERG caused dominant-negative suppression through multiple mechanisms. The shift in voltage dependence of HERG inactivation and the resulting enhanced inward rectification in A614V/WT and V630L/WT provide a novel mechanism for suppression of the HERG current carrying outward current during the repolarization phase of the action potential.

PubMed Disclaimer

LinkOut - more resources