Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Oct;56(1):97-117.
doi: 10.1016/s0301-0082(98)00031-8.

Neurogenesis of patterns of automatic ventilatory activity

Affiliations
Free article
Review

Neurogenesis of patterns of automatic ventilatory activity

W M St-John. Prog Neurobiol. 1998 Oct.
Free article

Abstract

Normal respiration, termed eupnea, is characterized by periodic filling and emptying of the lungs. Eupnea can occur 'automatically' without conscious effort. Such automatic ventilation is controlled by the brainstem respiratory centers of pons and medulla. Following removal of the pons, eupnea is replaced by gasping, marked by brief but maximal inspiratory efforts. The mechanisms by which the respiratory rhythms are generated have been examined intensively. Evidence is discussed that ventilatory activity can be generated in multiple regions of pons and medulla. Eupnea and gasping represent fundamentally different ventilatory patterns. Only for gasping has a critical region for neurogenesis been identified, in the rostral medulla. Gasping may be generated by the discharge of 'pacemaker' neurons. In eupnea, this pacemaker activity is suppressed and incorporated into the pontile and medullary neuronal circuit responsible for the neurogenesis of eupnea. Evidence for ventilatory neurogenesis which has been obtained from a number of in vitro preparations is discussed. A much-used preparation is that of a 'superfused' brainstem of the neonatal rat. However, activities of this preparation differ greatly from those of eupnea, as recorded in vitro or in arterially perfused in vitro preparations. Activities of this 'superfused' preparation are identical with gasping and, hence, results must be reinterpreted accordingly. The possibility is present that mechanisms responsible for generating respiratory rhythms may differ from those responsible for shaping respiratory-modulated discharge patterns of cranial and spinal nerves. The importance of pontile mechanisms in the neurogenesis and control of eupnea is reemphasized.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources