Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Sep 1;161(5):2465-72.

IL-2 induces T cell adherence to extracellular matrix: inhibition of adherence and migration by IL-2 peptides generated by leukocyte elastase

Affiliations
  • PMID: 9725245

IL-2 induces T cell adherence to extracellular matrix: inhibition of adherence and migration by IL-2 peptides generated by leukocyte elastase

A Ariel et al. J Immunol. .

Abstract

Migration of inflammatory cells requires cell adhesion and their subsequent detachment from the extracellular matrix (ECM). Leukocyte activation and migration must be terminated to stop inflammation. Here, we report that IL-2 enhances human T cell adherence to laminin, collagen type IV, and fibronectin (FN). In contrast, neutrophil elastase, an enzyme activated during inflammation, degrades IL-2 to yield IL-2 fractions that inhibit IL-2-induced T cell adhesion to FN. The amino acid composition of two of these IL-2 fractions, which appear to block T cell adherence to FN, were analyzed, and three peptides were consequently synthesized. The three peptides IVL, RMLT, and EFLNRWIT, but not the corresponding inversely synthesized peptides, inhibited T cell adhesion to FN induced by a variety of activators: IL-2, IL-7, macrophage inflammatory protein (MIP)-1beta, and PMA, as well as anti-CD3 and anti-beta1 integrin-activating mAb. Moreover, these IL-2 peptides inhibited T cell chemotaxis via FN-coated membranes induced by IL-2 and MIP-1beta. Inhibition of T cell adherence and migration apparently involves abrogation of the rearrangement of the T cell actin cytoskeleton. Thus, the migrating immune cells, the cytokines, and the ECM can create a functional relationship in which both inflammation-inducing signals and inhibitory molecules of immune responses can coexist; the enzymatic products of IL-2 may serve as natural feedback inhibitors of inflammation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources