Bottleneck effect on genetic variance. A theoretical investigation of the role of dominance
- PMID: 9725859
- PMCID: PMC1460318
- DOI: 10.1093/genetics/150.1.435
Bottleneck effect on genetic variance. A theoretical investigation of the role of dominance
Abstract
The phenomenon that the genetic variance of fitness components increase following a bottleneck or inbreeding is supported by a growing number of experiments and is explained theoretically by either dominance or epistasis. In this article, diffusion approximations under the infinite sites model are used to quantify the effect of dominance, using data on viability in Drosophila melanogaster. The model is based on mutation parameters from mutation accumulation experiments involving balancer chromosomes (set I) or inbred lines (set II). In essence, set I assumes many mutations of small effect, whereas set II assumes fewer mutations of large effect. Compared to empirical estimates from large outbred populations, set I predicts reasonable genetic variances but too low mean viability. In contrast, set II predicts a reasonable mean viability but a low genetic variance. Both sets of parameters predict the changes in mean viability (depression), additive variance, between-line variance and heritability following bottlenecks generally compatible with empirical results, and these changes are mainly caused by lethals and deleterious mutants of large effect. This article suggests that dominance is the main cause for increased genetic variances for fitness components and fitness-related traits after bottlenecks observed in various experiments.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
