Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Aug 15;59(1):74-83.
doi: 10.1016/s0169-328x(98)00139-9.

Role of c-fos in hypoxia-induced AP-1 cis-element activity and tyrosine hydroxylase gene expression

Affiliations

Role of c-fos in hypoxia-induced AP-1 cis-element activity and tyrosine hydroxylase gene expression

R R Mishra et al. Brain Res Mol Brain Res. .

Abstract

Previous studies have demonstrated that hypoxia stimulates expression of the c-fos gene in intact animals and isolated cells. The purpose of the present study was to assess the functional significance of c-fos activation during hypoxia. Using antisense c-fos strategy, we tested the hypothesis that c-fos is essential for activation of activator protein-1 transcription factor complex (AP-1) and subsequent stimulation of down stream genes such as tyrosine hydroxylase (TH) gene during hypoxia. Experiments were performed on rat pheochromocytoma 12 (PC12) cells. AP-1 activity was determined by a reporter gene assay using a luciferase expression vector driven by two copies of an AP-1 cis-element (AP-1-Luc). Cells transfected with AP-1-Luc construct were exposed to normoxia (21% O2) or to varying intensities and/or durations of hypoxia. AP-1 activity increased in response to hypoxia. The magnitude of the response depended on the intensity and duration of the hypoxic stimulus. Increases in AP-1 activity could not be elicited in neuroblastoma cells, indicating that hypoxia-induced increase in AP-1 activity is a cell selective phenomenon. Antisense c-fos abolished hypoxia-induced AP-1 activation in PC12 cells. Hypoxia increased tyrosine hydroxylase-chloramphenicol acetyl transferase activity (TH-CAT), and antisense c-fos and mutations at AP-1 binding sites in TH promoter abolished this effect. These results provide direct evidence that c-fos is essential for functional activation of AP-1 and subsequent activation of delayed response genes such as TH in PC12 cells.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources