Aminoglycoside-inactivating enzymes in clinical isolates of Streptococcus faecalis. An explanation for resistance to antibiotic synergism
- PMID: 97312
- PMCID: PMC371786
- DOI: 10.1172/JCI109149
Aminoglycoside-inactivating enzymes in clinical isolates of Streptococcus faecalis. An explanation for resistance to antibiotic synergism
Abstract
Clinical isolates of enterococci (Streptococcus faecalis) with high-level resistance to both streptomycin and kanamycin (minimal inhibitory concentration >2,000 mug/ml), and resistant to synergism with penicillin and streptomycin or kanamycin were examined for aminoglycoside-inactivating enzymes. All of the 10 strains studied had streptomycin adenylyltransferase and neomycin phosphotransferase activities; the latter enzyme phosphorylated amikacin as well as its normal substrates, such as kanamycin. Substrate profiles of the neomycin phosphotransferase activity suggested that phosphorylation occurred at the 3'-hydroxyl position, i.e., aminoglycoside 3'-phosphotransferase. A transconjugant strain, which acquired high-level aminoglycoside resistance and resistance to antibiotic synergism after mating with a resistant clinical isolate, also acquired both enzyme activities. Quantitative phosphorylation of amikacin in vitro by a sonicate of the transconjugant strain inactivated the antibiotic, as measured by bioassay, and the phosphorylated drug failed to produce synergism when combined with penicillin against a strain sensitive to penicillin-amikacin synergism.No differences were found in the sensitivity of ribosomes from a sensitive and resistant strain when examined in vitro using polyuridylic acid directed [(14)C]-phenylalanine incorporation in the presence of streptomycin, kanamycin, or amikacin. Therefore, we conclude that aminoglycoside-inactivating enzymes are responsible for the aminoglycoside resistance, and resistance to antibiotic synergism observed in these strains.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources